RhoE Is a Pro-Survival p53 Target Gene that Inhibits ROCK I-Mediated Apoptosis in Response to Genotoxic Stress

نویسندگان

  • Pat P. Ongusaha
  • Hyung-Gu Kim
  • Sarah A. Boswell
  • Anne J. Ridley
  • Channing J. Der
  • G. Paolo Dotto
  • Young-Bum Kim
  • Stuart A. Aaronson
  • Sam W. Lee
چکیده

The Rho family of GTPases regulates many aspects of cellular behavior through alterations to the actin cytoskeleton . The majority of the Rho family proteins function as molecular switches cycling between the active, GTP-bound and the inactive, GDP-bound conformations . Unlike typical Rho-family proteins, the Rnd subfamily members, including Rnd1, Rnd2, RhoE (also known as Rnd3), and RhoH, are GTPase deficient and are thus expected to be constitutively active . Here, we identify an unexpected role for RhoE/Rnd3 in the regulation of the p53-mediated stress response. We show that RhoE is a transcriptional p53 target gene and that genotoxic stress triggers actin depolymerization, resulting in actin-stress-fiber disassembly through p53-dependent RhoE induction. Silencing of RhoE induction in response to genotoxic stress maintains stress fiber formation and strikingly increases apoptosis, implying an antagonistic role for RhoE in p53-dependent apoptosis. We found that RhoE inhibits ROCK I (Rho-associated kinase I) activity during genotoxic stress and thereby suppresses apoptosis. We demonstrate that the p53-mediated induction of RhoE in response to DNA damage favors cell survival partly through inhibition of ROCK I-mediated apoptosis. Thus, RhoE is anticipated to function by regulating ROCK I signaling to control the balance between cell survival and cell death in response to genotoxic stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress.

The tumor suppressor p53 regulates cell-cycle progression and apoptosis in response to genotoxic stress, and inactivation of p53 is a common feature of cancer cells. The levels and activity of p53 are tightly regulated by posttranslational modifications, including phosphorylation, ubiquitination, and acetylation. Here, we demonstrate that the transcription factor Yin Yang 1 (YY1) interacts with...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

p53CSV, a novel p53-inducible gene involved in the p53-dependent cell-survival pathway.

Although a number of p53 target genes have been identified, the mechanisms of p53-dependent activities that determine cellular survival or death are still not fully understood. Here we report isolation of a novel p53 target gene, designated p53-inducible cell-survival factor (p53CSV). p53CSV contains a p53-binding site within its second exon and the reduction of expression by small interfering ...

متن کامل

RhoE binds to ROCK I and inhibits downstream signaling.

RhoE belongs to the Rho GTPase family, the members of which control actin cytoskeletal dynamics. RhoE induces stress fiber disassembly in a variety of cell types, whereas RhoA stimulates stress fiber assembly. The similarity of RhoE and RhoA sequences suggested that RhoE might compete with RhoA for interaction with its targets. Here, we show that RhoE binds ROCK I but none of the other RhoA tar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2006